Clinical Aspects of Phage Therapy

Introduction
Phage therapy, viral phage therapy, or phagotherapy is the therapeutic use of bacteriophages to treat pathogenic bacterial infections. Bacteriophages, known as phages, are a form of viruses. Phages attach to bacterial cells, and inject a viral genome into the cell. The viral genome effectively replaces the bacterial genome, halting the bacterial infection. The bacterial cell causing the infection is unable to reproduce, and instead produces additional phages. Phages are very selective in the strains of bacteria they are effective against.
Advantages include reduced side-effects and reduced risk of the bacterium's developing resistance. Disadvantages include the difficulty of finding an effective phage for a particular infection. However, virulent phages can be isolated much more quickly than other compounds and natural products due to the fact that they can be isolated from the environment with ease. In addition to this, development of standardized manufacturing processes would make lab to clinic delivery of phages much quicker.
Phages are often compared to antibiotics. Phages tend to be more successful than antibiotics where there is a biofilm covered by a polysaccharide layer, which antibiotics typically cannot penetrate. Bacteriophages are much more specific than antibiotics. They are typically harmless not only to the host organism but also to other beneficial bacteria, such as the gut microbiota, reducing the chances of opportunistic infections. They have a high therapeutic index, that is, phage therapy would be expected to give rise to few side effects, even at higher-than-therapeutic levels. Because phages replicate in vivo (in cells of living organism), a smaller effective dose can be used.
Evolution
Phages as living, dynamic, evolving, and specific entities, do not lend themselves easily to current categories, norms, and development models. In this sense, they act as disruptors, revealing the limitations imposed by the existing infrastructure. More precisely here, and to continue Chandler’s initial thought process, this paper aims to show that antibiotics also form a kind of epistemological infrastructure, which acts as a powerful inhibitor to the development of phage therapy. In this sense antibiotics prevent the development of solutions to the problem they contribute to create.
Due to the lack of data from RCTs, phages are currently only used in complex cases for patients in therapeutic failure, and are always accompanied by antibiotic treatment. However, the possibilities of application are multiple, and it is entirely conceivable that they could in some cases be used instead of antibiotics. Thus, they potentially have the power to control some existing superbugs, while limiting the emergence of new ones, by limiting the use of antibiotics. The potential applications go well beyond human health, being applicable also to biocontrol, animal health and the environment.
But phages, dynamic and evolutionary entities, are, as we have shown, framed, classified, categorized, as chemical molecules. In furthering Chandler’s line of thought, we therefore wished to show that we can think of antibiotics as an epistemological infrastructure that constitute an obstacle to the development of phage therapy, imposing constraints, and conceptions of treatment and cure, eradicationism being the baseline. Once again, there is no question of denying the importance of RCTs, only of showing the issues and assumptions around their design.
The journal of “Medical Microbiology & Diagnosis” is a peer reviewed medical journal that includes a wide range of topics in this fields including Bacteriology, Clinical and Medical Diagnostics, Parasitology, Bacterial Infections and creates a platform for the authors to make their contribution towards the journal. The editorial office promises a thorough peer review of the submitted manuscripts to ensure quality.
Best Regards,
Mary Wilson,
Associate Managing Editor,
Medical Microbiology & Diagnosis
E-mail: microbiology@jpeerreview.com